DET40 Bias Photodetector

1. Overview

YBPhotonics

The DET40 is a ready-to-use, high-speed photodetector for free-space optical systems. The unit consists of a circuit board, detector and RF connector in a compact aluminum housing. An SMA connector is used at the output to reduce size and maximize frequency response with a maximum bandwidth of 5 GHz.The detector is available in two spectral ranges, 320-1000 nm and 1000-1700 nm.

2. Features

- Five models cover the wavelength range 320-1700nm
- Bandwidth from 100MHz to 5GHz
- Rise times from 3.5ns to 350ps
- Compact size

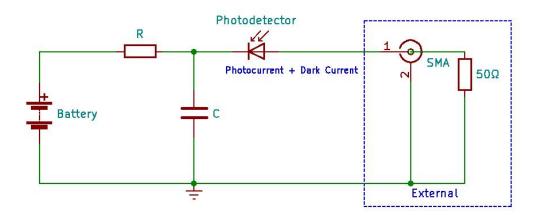
3. Applications

- Analog Microwave
- Laser Pulse Width Measurement

4. Specifications

Itomo	DET40A-	DET40A- DET40A-		DET40C-	DET40C-		
Items	100M	500M 1G		2G	5G		
Materials		Si		InGaAs			
Wavelength		320-1000nm	1000-1700nm				
Photosensitive	cosensitive		0.4mm	70um	40um		
diameter	1.211111	0.8mm	0.411111	700111	400111		
Responsivity	0.64A/W	0.57A/W	/W 0.52A/W 0.00A (M		@1550pm		
	@920nm	@800nm	@760nm	0.90A/W @1550nm			
Bandwidth	DC-100MH	DC-500MH	DC-1GHz	DC-2GHz	DC-5GHz		
Danuwiuth	z	z					
Rise time [®]	3.5ns	0.8ns	350ps	180ps	80ps		
Damage	ge 15mW		15mW	5mW	4mW		
threshold	TOULA	15mW	TOHIAA	SHIV	411100		
Bias voltage	10V	10V	3.3V 5V		5V		
Output	E00						
Impedance	50Ω						
Output	DC						
coupling mode	DC						
output	SMA female						
connector							

YBPhotonics


www.ybphotonics.com

Operating voltage	12VDC
Operating temperature	-20~65℃
Storage temperature	-40~85°C

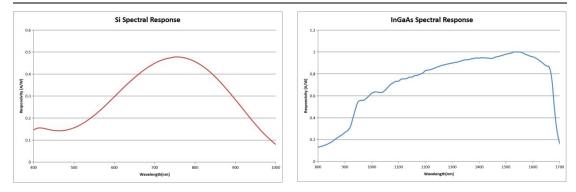
Remarks:

a For 50 Ω load

5. Schematic Block Diagram

6. Operating Procedures

- Adjust the voltage grid of the oscilloscope to 10mV/div and set the input impedance of the oscilloscope to 50Ω;
- Connect the output of the detector to the input of the oscilloscope with a coaxial cable;
- Ensure that the power received by the detector is within the saturation power, and then turn on the light source to be measured and align it with the photosensitive area;
- Observe the waveform of the oscilloscope.


Note: We use a load resistor R to convert the photocurrent I to a voltage V for viewing on an oscilloscope: V = I x R

Load resistance affects response speed, and for maximum bandwidth we recommend using a 50 ohm coaxial cable with a 50 ohm terminating resistor at the other end of the cable for impedance matching. If bandwidth is not important, the amount of voltage in a given light can be increased by gaining the load resistor. The length of the coaxial cable can have a profound effect on the response, so it is recommended to keep the cable as short as possible.

7. Response curve

YBPhotonics

www.ybphotonics.com

Note: Response curves are typical values for reference only.

8. Mechanical dimensions

41x30x14mm (Without connectors)

9. Shipping list

Item	Name of material	num	unit	note
1	photodetector	1	pcs	
2	SMA to BNC RF Cable	2	pcs	