YBPhotonics

DET20 Bias Photodetector

1. Overview

The DET20 is a ready-to-use photodetector for free-space optical systems. The unit consists of a circuit board, detector and RF connector packaged in a compact aluminum housing. An SMA connector is used at the output to reduce size and maximize frequency response.

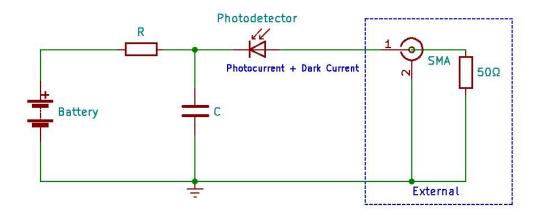

2. Features

- 30mm mounting holes for optical cage system
- Large optical size
- Optional lithium battery power supply, lower noise
- Optional FC flange, can use fiber optic coupling

3. Applications

- Optical experiment
- Pulsed light waveform detection
- Measuring Instruments

4. Specifications

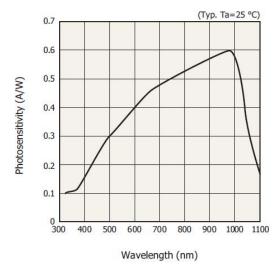

Items	DET20A-20M
Materials	Si
Wavelength	320-1000nm
Active Area	3.6x3.6mm
Responsivity	0.6A/W @960nm
Bandwidth®	DC-20MHz
Rise time ^a	18ns
Damage	30mW
threshold	301177
Bias voltage	10V
Output	50Ω
Impedance	3052
Output	DC
coupling mode	
output	SMA female
connector	Sivily Territice
Operating	12VDC
voltage	12000
Operating	-20~65°C
temperature	-20 -03 C
Storage	-40~85°C

temperature Remarks:

a For 50 Ω load

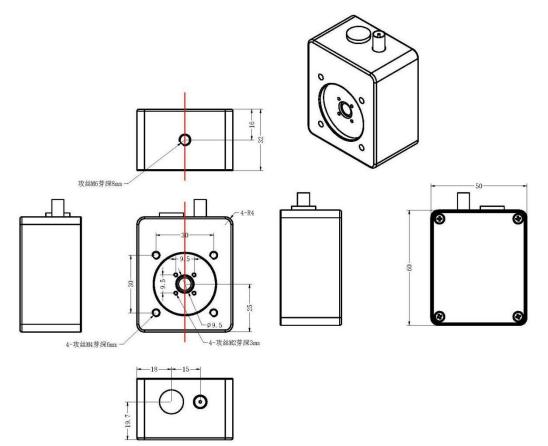
5. Schematic Block Diagram

6. Operating Procedures


- Adjust the voltage grid of the oscilloscope to 10mV/div and set the input impedance of the oscilloscope to 50Ω;
- Connect the output of the detector to the input of the oscilloscope with a coaxial cable;
- Ensure that the power received by the detector is within the saturation power, and then turn on the light source to be measured and align it with the photosensitive area;
- Observe the waveform of the oscilloscope.

Note: We use a load resistor R to convert the photocurrent I to a voltage V for viewing on an oscilloscope: V = I x R

Load resistance affects response speed, and for maximum bandwidth we recommend using a 50 ohm coaxial cable with a 50 ohm terminating resistor at the other end of the cable for impedance matching. If bandwidth is not important, the amount of voltage in a given light can be increased by gaining the load resistor. The length of the coaxial cable can have a profound effect on the response, so it is recommended to keep the cable as short as possible.


7. Response curve

YBPhotonics

Note: Response curves are typical values for reference only.

8. Mechanical dimensions

9. Shipping list

ltem	Name of material	num	unit	note
1	photodetector	1	pcs	
2	power adapter	1	Pcs	12V
3	SMA to BNC RF Cable	2	pcs	